[
bfs
graph
connected components
]
BinarySearch 0046 Shortest Bridge
Problem statement
https://binarysearch.com/problems/Shortest-Bridge/
Solution
Equal to Leetcode 0934. Shortest Bridge.
Complexity
It is O(mn)
for time and space.
Code
class Solution:
def shortestBridge(self, grid):
m, n, num = len(grid), len(grid[0]), 2
comps = defaultdict(list)
def dfs(i, j, k):
if not 0 <= i < m or not 0 <= j < n or grid[i][j] != 1:
return
grid[i][j] = k
comps[k] += [(i, j)]
for x, y in [[i+1,j],[i-1,j],[i,j-1],[i,j+1]]:
dfs(x, y, k)
for i, j in product(range(m), range(n)):
if grid[i][j] == 1:
dfs(i, j, num)
num += 1
V = set()
q = deque([(-1, x, y) for x, y in comps[2]])
while q:
dist, i, j = q.popleft()
if grid[i][j] == 3: return dist
for x, y in [[i+1,j],[i-1,j],[i,j-1],[i,j+1]]:
if not 0 <= x < m or not 0 <= y < n or grid[x][y] == 2 or (x, y) in V: continue
V.add((x, y))
q += [(dist + 1, x, y)]